Custom Components GalleryNEW
ExploreCustom Components GalleryNEW
ExploreNew to Gradio? Start here: Getting Started
See the Release History
gradio.TabbedInterface(interface_list, ยทยทยท)
A TabbedInterface is created by providing a list of Interfaces or Blocks, each of which gets rendered in a separate tab. Only the components from the Interface/Blocks will be rendered in the tab. Certain high-level attributes of the Blocks (e.g. custom css
, js
, and head
attributes) will not be loaded.
Parameter | Description |
---|---|
interface_list list[Interface] required | A list of Interfaces (or Blocks) to be rendered in the tabs. |
tab_names list[str] | None default: None | A list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc. |
title str | None default: None | The tab title to display when this demo is opened in a browser window. |
theme Theme | str | None default: None | A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme. |
analytics_enabled bool | None default: None | Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True. |
css str | None default: None | Custom css as a string or path to a css file. This css will be included in the demo webpage. |
js str | None default: None | Custom js or path to js file to run when demo is first loaded. This javascript will be included in the demo webpage. |
head str | None default: None | Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, scripts, stylesheets, etc. to the page. |
import gradio as gr
tts_examples = [
"I love learning machine learning",
"How do you do?",
]
tts_demo = gr.load(
"huggingface/facebook/fastspeech2-en-ljspeech",
title=None,
examples=tts_examples,
description="Give me something to say!",
)
stt_demo = gr.load(
"huggingface/facebook/wav2vec2-base-960h",
title=None,
inputs=gr.Microphone(type="filepath"),
description="Let me try to guess what you're saying!",
)
demo = gr.TabbedInterface([tts_demo, stt_demo], ["Text-to-speech", "Speech-to-text"])
if __name__ == "__main__":
demo.launch()